A numerical solution of mixed Volterra Fredholm integral equations of Urysohn type on non-rectangular regions using meshless methods

Authors

  • H. Laeli Dastjerdi Department of Mathematics, Najafabad Branch, Islamic Azad University, Najafabad, Iran
  • M. Nili Ahmadabadi Department of Mathematics, Najafabad Branch, Islamic Azad University, Najafabad, Iran
Abstract:

In this paper, we propose a new numerical method for solution of Urysohn two dimensional mixed Volterra-Fredholm integral equations of the second kind on a non-rectangular domain. The method approximates the solution by the discrete collocation method based on inverse multiquadric radial basis functions (RBFs) constructed on a set of disordered data. The method is a meshless method, because it is independent of the geometry of the domain and it does not require any background interpolation or approximation cells. The error analysis of the method is provided. Numerical results are presented, which confirm the theoretical prediction of the convergence behavior of the proposed method.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

a numerical solution of mixed volterra fredholm integral equations of urysohn type on non-rectangular regions using meshless methods

in this paper, we propose a new numerical method for solution of urysohn two dimensional mixed volterra-fredholm integral equations of the second kind on a non-rectangular domain. the method approximates the solution by the discrete collocation method based on inverse multiquadric radialbasis functions (rbfs) constructed on a set of disordered data. the method is a meshless method, because it i...

full text

Approximate Solution of Linear Volterra-Fredholm Integral Equations and Systems of Volterra-Fredholm Integral Equations Using Taylor Expansion Method

In this study, a new application of Taylor expansion is considered to estimate the solution of Volterra-Fredholm integral equations (VFIEs) and systems of Volterra-Fredholm integral equations (SVFIEs). Our proposed method is based upon utilizing the nth-order Taylor polynomial of unknown function at an arbitrary point and employing integration method to convert VFIEs into a system of linear equ...

full text

A Numerical Solution of Nonlinear Volterra-fredholm Integral Equations

In this paper, a numerical procedure for solving a class of nonlinear VolterraFredholm integral equations is presented. The method is based upon the globally defined sinc basis functions. Properties of the sinc procedure are utilized to reduce the computation of the nonlinear integral equations to some algebraic equations. Illustrative examples are included to demonstrate the validity and appli...

full text

Numerical solution of general nonlinear Fredholm-Volterra integral equations using Chebyshev ‎approximation

A numerical method for solving nonlinear Fredholm-Volterra integral equations of general type is presented. This method is based on replacement of unknown function by truncated series of well known Chebyshev expansion of functions. The quadrature formulas which we use to calculate integral terms have been imated by Fast Fourier Transform (FFT). This is a grate advantage of this method which has...

full text

A computational wavelet method for numerical solution of stochastic Volterra-Fredholm integral equations

A Legendre wavelet method is presented for numerical solutions of stochastic Volterra-Fredholm integral equations. The main characteristic of the proposed method is that it reduces stochastic Volterra-Fredholm integral equations into a linear system of equations. Convergence and error analysis of the Legendre wavelets basis are investigated. The efficiency and accuracy of the proposed method wa...

full text

A computational method for nonlinear mixed Volterra-Fredholm integral equations

In this article the nonlinear mixed Volterra-Fredholm integral equations are investigated by means of the modied three-dimensional block-pulse functions (M3D-BFs). This method converts the nonlinear mixed Volterra-Fredholm integral equations into a nonlinear system of algebraic equations. The illustrative   examples are provided to demonstrate the applicability and simplicity of our   scheme.    

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 04  issue 04

pages  289- 304

publication date 2015-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023